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Abstract—This paper introduces Beluga, a novel approach to
boosting explanatory learning in large language models (LLMs)
using GPT assistance. We propose a method that combines
boosted explanation tuning, knowledge distillation, and a fo-
cus on deployability to create a more efficient and practical
model. By creating a non-linear thought graph for better logic
extraction and distilling knowledge from larger teacher models
into a smaller Pythia-1B model, Beluga aims to improve perfor-
mance while maintaining a compact size suitable for resource-
constrained devices. We highlight the advantages of deploying
LLMs closer to consumers, including decreased latency, en-
hanced privacy, and offline functionality. The key contribution
includes an improved explanatory dataset, an efficient knowledge
distillation process, and a focus on deployability for resource-
constrained environments.
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I. INTRODUCTION

Large Language Models (LLMs) have made significant
breakthroughs in natural language processing (NLP) tasks,
such as language translation and text generation [12]. These
models, powered by advanced deep learning techniques, have
revolutionized the field of NLP and opened up new possi-
bilities for understanding and generating human-like text. By
leveraging massive amounts of data and complex algorithms,
LLMs have achieved unprecedented levels of performance
in various language-related tasks, captivating researchers and
industry professionals alike.

The emergence of LLMs has been driven by the exponential
growth of computational power and the availability of vast
quantities of textual data. These models, characterized by their
vast size and complex architectures, are trained on enormous
datasets, which allow them to capture intricate patterns and
nuances in language. As a result, LLMs can understand
and generate text that is remarkably coherent, contextually
appropriate, and even creative [24].

These models typically consist of millions and billions of
parameters, making them computationally intensive and neces-

sitating specialized hardware infrastructure [12]. To address
the challenges posed by the large size and computational
requirements of LLMs, some researchers have been focusing
on the technique of knowledge distillation [21]. This approach
aims to distill information and insights from larger models into
smaller ones while maintaining similar performance levels.

Knowledge distillation involves training a smaller model,
often referred to as a student model, to mimic the behavior
and knowledge of a larger, more complex model known as
the teacher model. The teacher model acts as a knowledgeable
guide, providing supervisory signals to the student model dur-
ing training. By leveraging the knowledge and representations
learned by the teacher model, the student model can achieve
comparable performance to the larger model, even with limited
computational resources [14]. Using this concept, it is possible
to make LLM technology more accessible and deployable
in resource-constrained environments [9]. By distilling the
knowledge from larger models into smaller ones, researchers
can bridge the gap between the immense power of LLMs and
the practical limitations imposed by hardware constraints [11].

Deployment Application: Deploying LLMs closer to the
consumer, both in terms of hardware requirements and de-
ployment strategies, offers several notable advantages. Local
models, situated directly on user devices or within localized
infrastructure, present positive outcomes such as decreased
latency and enhanced privacy. By having the LLM reside
closer to the consumer, there is a substantial reduction in the
time it takes for data to travel back and forth between the user’s
device and a remote server. This decreased latency translates
into quicker and more seamless interactions, enabling near
real-time language processing and significantly enhancing the
user experience. Moreover, local models can contribute to im-
proved privacy protection. By keeping the data processing and
analysis on the user’s device or within localized infrastructure,
the need to transmit sensitive information to external servers
is minimized. This mitigates potential privacy risks associated



with data transfer and storage, as the user maintains greater
control over their personal information. Local models allow
for on-device data processing, preserving user privacy and
potentially reducing the exposure of sensitive data to external
entities. Additionally, local models can operate effectively in
offline or low-connectivity scenarios, where internet access
may be limited or unreliable. By having an LLM installed
directly on the user’s device, individuals can continue to utilize
language processing capabilities even without a stable internet
connection. This offline functionality empowers users to access
and leverage LLM technology in various contexts, regardless
of their internet connectivity status.

Key Contributions:
• Boosted Explanation Tuning: We improve current ex-

planatory datasets by creating a non-linear thought graph
to better extract logic. This approach goes beyond instruc-
tion tuning and chain-of-thought prompting, by including
detailed explanations of possible solution paths. In this
manner the student model gets more insights into the
teacher model’s reasoning process. This can help the
student model mimic the thought process of the teacher
model, leading to improved performance and understand-
ing.

• Distilling Knowledge: By leveraging the expertise and
knowledge present in very large teacher models, the
student model benefits from their advanced language
capabilities, reasoning abilities, and comprehension skills.
Here we specifically train the Pythia-1B model on a
boosted explanation dataset using knowledge distillation

• Deployability: In specifically choosing a well small pre-
trained model, we can deliver a better computation-to-
performance ratio. This becomes especially crucial when
deploying the model on resource-constrained devices like
smartphones. By carefully selecting the 1B parameter
model, we can optimize computational efficiency while
still achieving satisfactory performance.

II. LITERATURE OVERVIEW

Large-scale language models have seen significant advance-
ments in recent years, with models like:

• GPT-2 (124M, 355M, 774M, 1.5B): Pre-trained for 30B
Tokens [13]

• Bloom (560M, 1.1B, 1.7B, 3B, 7.1B, 176B): Pre-trained
for 350B Tokens [20]

• LLaMA (7B, 65B): Pre-trained for 1T Tokens [17]
• Pythia (70M, 160M, 410M, 1B, 1.4B, 2.8B, 6.9B, 12B):

Pre-trained for 300B Tokens [2]
• OpenLLaMA (3B, 7B, 13B): Pre-trained for 1T Tokens

[6]
• StableLM (13B): Pre-trained for 800B Tokens [4]
• Flacon (1B*, 7B, 40B): Pre-trained for 1.5T Tokens [1]
• MPT (1B*, 7B, 30B): Pre-trained for 1T Tokens [16]
• OPT (125M, 350M, 1.3B, 2.7B, 6.7B, 13B, 30B, 66B,

175B): Pre-trained for 300B Tokens [23]
These models have demonstrated impressive generalization

capabilities, allowing for improved performance across vari-

ous natural language processing (NLP) tasks [17]. However,
smaller models have not received as much attention, typically
being trained on datasets of around 300B tokens. Models such
as Bloom [20], Pythia [2], Flacon [1], and MPT [16] fall into
this category, with no models smaller than 7 billion parameters
being trained on 1 trillion tokens [20] [2].

To make smaller models more practical and usable, re-
searchers have explored knowledge distillation techniques,
leveraging the knowledge and representations learned by larger
models [7]. DistilBERT [14] and distilGPT [10] are early
examples of models where knowledge is distilled from larger
counterparts into smaller, more efficient versions. However,
significant work is still to be done, as replicating the reasoning
and logic of the larger models have proven to be challenging
[21] [8].

Self-instruct [18] has gained momentum in recent literature,
giving birth to various novel approaches:

• Zero-shot learning
• Few-shot learning [3]
• Chain-of-Thought [19]
• Tree-of-Thought [22]
Models like Alpaca [15] and Vicuna [5] have been

fine-tuned on small (¡100K examples) instruction-following
demonstrations generated from much larger models, such as
ChatGPT. LaMini-LM [21] introduces a medium-scale instruc-
tion dataset ( 2.5M examples) derived from ChatGPT and
finetunes a variaty of ¡1B parameter models on the instruction
dataset. The authors suggest their extensive evaluations of
these model reveal that their methods demonstrate that their
proposed models achieve comparable performance to Alpaca
while being nearly ten times smaller in size [21]. Despite
papers reporting similar behavior as their larger counterparts,
further evaluations reveal that the imitation models fail to close
the performance gap with ChatGPT on tasks that lack strong
support in the imitation data. It is noted that the imitation
models excel in mimicking ChatGPT’s style but struggle with
factuality and logic. Concluding that model imitation is not
a viable solution, as there exists a significant capabilities gap
between open and closed LMs [8].

However, more recent developments challenge such find-
ings, Orca [11] is a notable development in chain-of-thought
prompting [19], which was trained on a 5 million example (the
largest knowledge distillation to date) dataset extracted from
GPT-3 and GPT-4. Despite being a medium-sized model with
13B parameters, Orca demonstrated exceptional performance,
achieving results comparable to 13x-35x larger models [11].
The success of Orca highlights the potential of leveraging
large-scale instruct datasets and knowledge distillation tech-
niques to enhance the capabilities of smaller models, making
them more efficient and effective in complex problem-solving
tasks [21].

This trend of knowledge distillation has shown promising
results. Logic-based knowledge extraction aims to incorporate
logical reasoning and inference into the process of distilling
knowledge from large models. By incorporating logical prin-
ciples and rules, we can aim to improve the interpretability



and explainability of the distilled knowledge. Allowing for
compressed models that not only deliver high performance
but also provide insights into their decision-making processes
based on logical reasoning [21] [7] [18].

III. METHODOLOGY

The intuition behind training LLMs lies in the vast amount
of data used to develop their understanding of language. Being
trained on massive datasets that include a wide variety of
texts, ranging from books and articles to websites and social
media. Through this exposure, the model learns to recognize
patterns, grammar rules, word associations, and contextual
meanings present in human language. By tailoring the data
to a particular domain or task, the model can learn context-
specific information, patterns, and nuances that are crucial for
excelling at that specific task

• Pretraining: Train model on trillions of words, often
extracted from the internet - learn basics of language.

• Finetuning: Tune model on high quality texts that resem-
ble ideal model output, e.g. conversations

• Reinforcement Learning: Using human assistance, the
model receives feedback in the form of rewards or
penalties.

A. Boosted Explanation Tuning

Boosted Explanation Tuning is an innovative approach that
extends beyond traditional instruction tuning and chain-of-
thought prompting. At its core, this method involves creating
a non-linear thought graph that more accurately captures
the complex reasoning processes inherent in large language
models.

We begin by generating a comprehensive thought graph for
each problem or task. This graph represents various solution
paths, including correct approaches, common misconceptions,
and potential pitfalls. Unlike linear chain-of-thought prompts,
this graph effectively captures the branching nature of complex
reasoning.

For each node within the thought graph, we provide detailed
explanations that cover not just the next step in the process,
but also the reasoning behind why that step is chosen, what
alternatives were considered, and how this step contributes to
the overall solution. Additionally, we integrate error analysis
into the graph, highlighting common mistakes and explaining
their inaccuracies. This helps the model to not only avoid
these errors but also to understand the reasoning behind correct
solutions.

Where applicable, multiple valid solution paths are included
in the thought graph. This exposure to different problem-
solving strategies enhances the model’s flexibility and ro-
bustness. Furthermore, we incorporate metacognitive elements
into the explanations, such as strategy selection, progress
monitoring, and solution evaluation, helping the model develop
a more human-like approach to problem-solving.

By training on this enriched dataset, the student model gains
deeper insights into the teacher model’s reasoning process.

This approach is designed to enable the student model to inter-
nalize the underlying logic and reasoning strategies, rather than
merely mimicking the surface-level behavior of the teacher.

B. Knowledge Distillation

Knowledge Distillation is the process of transferring knowl-
edge from a large, complex model (the teacher) to a smaller,
more efficient model (the student). In the Beluga approach, we
employ an advanced form of knowledge distillation to train the
Pythia-1B model.

The process begins with the selection of a very large, state-
of-the-art language model as the teacher, which serves as the
source of knowledge and expertise. Using this teacher model,
we generate a large, diverse dataset of responses to a wide
range of prompts and tasks. These responses incorporate the
boosted explanations described earlier.

Instead of relying solely on the final output of the teacher
model, we capture the probability distribution over its output
vocabulary. This ”soft target” contains more information than
a simple classification, allowing the student model to learn
the nuances of the teacher’s decision-making process. We also
apply temperature scaling to the teacher’s output distributions,
adjusting the ”softness” of the targets to control the balance
between the highest probability outputs and lower probability
alternatives.

To train the student model, we use a combination of cross-
entropy loss (to match the teacher’s outputs) and a distillation
loss (to match the teacher’s soft targets). This encourages the
student model to mimic both the outputs and the underlying
reasoning of the teacher. Additionally, we employ an iterative
process where the student model’s outputs are compared not
just to the teacher’s immediate responses, but also to follow-
up explanations and clarifications. This helps ensure that the
student model captures deeper levels of understanding.

Finally, after the general knowledge distillation, we perform
task-specific fine-tuning on specialized datasets. This step
helps the model to excel in particular applications while
retaining its general capabilities.

By combining these advanced knowledge distillation tech-
niques with our boosted explanation dataset, we aim to create
a smaller model that not only matches the performance of
much larger models on specific tasks but also demonstrates
a deeper understanding of the reasoning processes involved.
This approach allows us to leverage the expertise of very large
teacher models while creating a more deployable and efficient
student model.

IV. DISCUSSION

Our Beluga approach addresses several important challenges
in the field of large language models, particularly focusing on
making these powerful tools more accessible and practical for
real-world applications.

One of the most significant contributions of this work is
the introduction of boosted explanation tuning. By creating
a non-linear thought graph, we aim to capture more com-
plex reasoning processes than traditional instruction tuning or



Fig. 1. Prediction on Apple’s Neural Engine, which allows for fast and
efficient inferences over various platforms like iOS and MacOS.

Fig. 2. Training graph of model

chain-of-thought prompting. This approach has the potential to
significantly improve the student model’s ability to mimic the
teacher model’s thought processes, potentially leading to better
performance and understanding. The focus on knowledge dis-
tillation is another crucial aspect of our research. By leveraging
the expertise of very large teacher models and distilling this
knowledge into a smaller Pythia-1B model, we are addressing
one of the major limitations of current LLMs: their size
and computational requirements. This approach aligns with
recent trends in the field, such as the Orca model, which
demonstrated that smaller models can achieve performance
comparable to much larger ones when trained on high-quality,
diverse datasets.

Our emphasis on deployability is particularly noteworthy.
By choosing a smaller pre-trained model and optimizing for
a better computation-to-performance ratio, we are making
strides towards more widespread adoption of LLM technology.
This focus on practical deployment, especially for resource-
constrained devices like smartphones, could have significant
implications for the accessibility of advanced language pro-
cessing capabilities. However, it’s important to note that we
haven’t provided detailed performance metrics or comparisons
with other state-of-the-art models in this paper. Future work
could benefit from more comprehensive evaluations to clearly
demonstrate the advantages of the Beluga approach over
existing methods.

Additionally, while we mention improved privacy as a
benefit of local deployment, it would be valuable to explore
this aspect further. As privacy concerns continue to grow in the

AI field, a more in-depth discussion of how Beluga addresses
these issues could strengthen the paper’s impact.

Our approach also raises interesting questions about the
trade-offs between model size, performance, and interpretabil-
ity. While smaller models are more deployable, it would be
interesting to explore how much of the larger models’ capa-
bilities can truly be distilled without loss of performance or
reasoning ability. In conclusion, our Beluga approach presents
a promising direction for making LLMs more practical and
accessible. By combining advanced training techniques with
a focus on deployability, this work contributes to the ongoing
efforts to bridge the gap between the immense power of
large language models and the practical constraints of real-
world applications. Future research could build upon this work
by providing more detailed performance analyses, exploring
privacy implications further, and investigating the scalability
of this approach to even more complex language tasks.
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